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A dynamical calculation using Balazs type N/D method is

performed for the T =2 T - m system in P state. Self

3/2
consistent solutions for the position and residue of a resonance
are obtained for wide range of the relevant Yukawa coupling constants

and different sets of matching points. Some remarks are made regarding

(e

. -

interpretation of the results.
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such & resonance on basis of Chew-low or strong coupling models”.

1. INTRODUCTION

Recently Pan and Elyl’ 2 have presented evidence for the existence
of a T =2 I - n resonance of narrow width and mass ~ 1415 Mev,
in their experiments or;‘K- interaction with ﬁeutrons in carbon. If
the existence of this resonance is confirmed in other experiments, it
will have important implications for the unitary symmetry scheme of
strongly interacting particles. The lowest representatioﬁ of the
group Sus’in which this resonance can be placed in of dimension 27.

L4

Some years back,several authors predicted the existence of

3

It is however interesting to note that dynamical calculation of
meson baryon resonances in the Octet model by Martin and Wza!,lillL

did not indicate any resonalnce in the 27 dimensional representation
of SUs. This may however be due to the fact. that the short range °
forces ariéing from the far aw'ay singularities were not adequately
treated by them. Recently, Gyuk, Simmons and 'I‘uﬁa.n5 have given some
rough bootstrap arguments for the T = 2. ¥ ~ 7 resonance and suggest
that the most likely éngula.r momentum state is P, , . In view of
these- indications , we have done a detailed dynamical analysis of
this problem following the method of Balazs6 in order to take ac-
count of the far away left hand singularities. In the present note

we report the calculation of the P3 /2 system. Other angular momentum

states are currently being investigated using the same method.



A rather welcome circumstance is that, unlike the case of
T=0and T=1 T - nsystems, this is essentially a single
channel problem in the appx;oximtion of neglecting irnelastic
effects. |

In Sec. 2 we present thedetails of the calculation. Contri-
bution of the nearby Born cuts due to the eiéha.née of A end T in
t:.he u-channel are exactly evaluated. Far away left hand singularities
are replaced by Balazs poles. - Self consistent solutions for posi-
tion and residue of a T = 2 T - m resonance (to be called Yo* in
the fdllcwing) are obtained by a computér. The results are discussed
in Sec. 3. It is found that very good self consistent solutions do
exist If_or & wide range of the Yukaws coupling constants. The question
of dependence of the solutions on the choice of matching points is )
also examined a.nd‘ discussed. . | \
2. DETAILS OF THE CALCULATION

As the kinematical details of, meson baryon systems are fairly.
well known7, we merely present the results briefly. Denoting the
four momenta of incoming £ and m by p1‘, Q1 and those of the out-
going £ and m by Dz, qz respectively, the invariants s, t, u

sua’s

4

are defined as u

A
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8 = (p1 + q1)2

-02)2 = -2¢% (1 - cos 6)

[T
[}

2(s2 + @) -8 + 22 (1 - cos 9)

u = (p1 - q2)%

where W q and © denote respectively the total energy, magnitude of
three momentum and scattering angle in the C M system of s channel.
As in reference 7, we choose the elastic scattering amplitude

P Y-t system to be
for 5/2 ™ BY!

g(s) = w2 eld, simb /&

The important singularities of the partial wave amplitude (shown in
Fig. 1) arise as follows:

(I) s channel : We have the usual right hand cut f’or8

(}:‘,+11)2‘=91.655$a‘”'

(1)

(2)

(3)



and a pole due to Yp* at

8 =8g = (m!é,(_)2 (&)

(II) w and t channels: All the exchanged systems give rise
to a cut from o to - ». In addition to this, exchange of

A gives rise to the cut: e
[
Ip =8.2<8sL; =8.0 ~(5)
whereas exchange of T gives rise to the cut

L = TLAh <8 <SIs =T5.4 : (6)

Intermediate states with messes larger than (£ + )2 (in particular,

all Y*'s) give rise to left hand cuts below s = 57.3. Exchange of

o~
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two pion system in t channel (in particular vector meson p) gives

rise to a circular cut (not shown in Fig. 1). Contribution of this

vor o is known to be small compared to that of the excha.nged baryons for
the 33 /2 system and hence its contribution to nearby siWities
will be neglected. Of course, contributiorsof all the exchanged
systems-to the far away cut (0 to - w)are retained.

Except for some changes, we follow the general method of cal-

’

culation using Balazs type poles described by Singh and Udgaonkar9
and Pa.t_i;'o. The reader is referred to these works for details.

The amplitude g(s) is written as
g(s) . N(s)/D(s) N (7)

where, as usual D(s) has only the right hand unitarity cut and N(s)
has only. the left hand cuts. In the elastic approximation we
have )

.

- . 13 N( ') ds'
pe) =1 GG ~ (®)

(z+m)2 S




where so 1s the arbitrary subtraction point which we choose for
convenlience in latter calculation to be the mid-point of the A-cut

For the N(n\ we writs
N(s) = N_(8) + No(s) . ‘ (9)

where

N(s) = & . [ng(e )1 D(e’) do’ - (0
n

L refers to the nearby portion of the left hand cut. As discussed

n references 9 and 10 Nf(B) is written as

¥

No(s) = 22— 4 —Be_ o (11)

8 - 83 8 - B4



where in our case the positions of the two poles are determined

from Balazs curves to 'be

Residues Ra, R4 are still unknown at this stage.

The Born terms due to A and ¥ exchange are given by

g2
gy (8) = 52d [ {0 +35)2 - ) (WY - 28} @ (x)

+ {(W-2)2 - 1A} {W42E-Y) Qo (x)]

2(22442) - 8 - Y2
2q°

+ 1

where Y stands for ¥ or A, Q (x),Q (x) for Legendre functions of

second kind and 9!211\ for the renormalized coupling' constant.

(12)

(13)

(1h ),u
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Contribution of Y * in the s- channel is given by

vwhere  1s the residue at W-Wp = \fs; . For a resonance it is

related to the total width T by

where 9z is the ¢ m momentum of ¥ m system at resonance.

Contribution due to exchange of Yo* can be obtained by

describing it by & Rarita Schwinger fieldll and is given by

EX 2 » C(s)
By » (s) = f(W+3)® - 112?. 8 ¢*

AP I

(1)

" (16)

(17)
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where

C(s) = {(W2)2 - «f} {alW) (V-22-Wg) + B(Wp) (2E-W-Wp)} Qu (2)

(18)
+ {(W-2)2 - o} {a(W) (W+2% + Wp) + B(W ) (Wo-25-W)} Qa (2) -
o) c2EE+2 @ 42 - W2 -8 . (19)
' 2
a(wR_) = [(wR +'5:)2 - ?)2/12 WRZ ~ (20)
. 222+2T‘|2-8-WR2 ‘
3 = : +1 (21)

2 q<
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In order to obtain an idea of the relative contribution of
various nearby singularities to Nn(s) we temporarily made a linear
approximation for the D(s) function, in the unphysical region (i.e.,

assuming resonance at s, ~ 103)

D(s) = 1 - =20

(22)

Using (22) and imaginary parts of the Born terms, we have checked

explicitly that the contributions due to the exchange of Y * (1415),
Yo* (1405), Y1* (1385) to Nn(s) for s in the physical region were
mach smaller than those due to the exchange of ¥ and A for reasonable

values of coupling constantsla.

Furthermore, as the cuts due to A and ¢ exchange are quite short
as compared to their mean distances from points on the right hand
cut, we can replace them by poles at their mid-points (81, 82)
to a very good approximtidn. This was also explicitly <:hecked(l3 ) .

Now we drop the assumption (22) for D(s) and write

N (s) = —Ra_ 4 Bz Dlsp)
n 8 ~ 83

8 - 8p

| (23)




-11 -
where
I
Ry = -i JL2 Img(s') ds'
1 e
Rp = -2 I - Img(s') das'

3

We note that by our normalization

(80 = 81), D(Sl) =; 1 e

Defining

13 dsl

P(s, 80, 8;) = 230 R aE )

(z+m)?

We obtaln from (8), (9), (11) and (23) s

(24)

(25)

(26)




(X3

D(s) = 1-RiF(s, 80 81) - RaF(s, 8o, 82) D (82)

(27)

- RaPF(s, 80, 83) - ReF(s, so, 84)

D(sz) can be obtained from the last equation in terms of other

parameters. On resubstituting we get D(s) in terms of the two

. unknown parameters Rz, Ry and the rest known constants or func-

tioné.

In order to determine Rs and Ry we match the values of N(s)/D(s)
obtained from (9), (11) (23) and (2:?) at two € judiciously chosen »
points, called the matching points (SM1’ SMZ ) with the value of the
partial wave amplitude obtalned from fixed energy dispersion relatio: 14..
This relatioﬁ is to be used only where the partial wave expansion is

expected to be valid.

The fixed energy dispersion relation for the invariant a.mplit;udes7

Als,t,u), B(s,t,u) is given by
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R ImB (u',s) du'
S S I O O Nl
B(s,t,u) = e toizE t 55 + ﬁj du 2o

- (28)

Im Bt(t',s) at!’
t'-t

+-]-'J\dt'
o .

A similar expression holﬁs for A(s,t,u). The third term corresponds
to contribution of ¥z* in the s~-channel. In consistency with our
previous approximations we drop contributions from exchanges of vec-
tor mesons and higher mass, sté.tes in t-channel. In u channel we
retain contribution of Yo* exchange to the first integral

although it is small. Hence we have

(s) - (29)

Now the matching equation is given by

i Bgle) +Wle) gy e
D(s) o

. e . v
[ o S TR N (m)
L EERES St SR

TR S g o S T R T R e Y



Re D(eg out) =0 (32) .
and the output residue x by
Aout =~ %‘T {:(BR out) } (33)
R out ‘Re D' (BR-out)

- 14 -

which after some algebra reduces to an equation of the type

Rs £ + Ry f2 + f3 = O (31)

where f,, fp, f3 are complicated functions which need not be given.
We write Eq. (31) at two points, 57 Sy and solve to obtain
Rz and Rq. D(8) and N(s) are now completely known. -

The output position of resonance or bound state is given by

The abqve_ ce.lcvlilla.tion, was carriedout numerical]yoz}mn 7091;., »

o i

gy

e



PUPUTAEIT TR 2 ST

Yout

-15 -

The.fonowing iterative procedure was adopted to find the self-con-

" sistent solutions. For a given set of values of

B, B

and the two matching points By and "y, Were chosen.

Y Mz'®R 1n

Rs and Ry were found by solving Eq. (31) at le and st » $pout 20

were then found from (32) and (33) and compared with SR,

a

and w. . and

in SR out out were chosen as input values for the next

iteration. The whole procedure was repeated ti1l BR out and 8e in’

and u, came out to be equal within some preassigned accuracy.

in
Various sets of starting values of Sp. and "y Were chosen. The

Yout

calculation was repeated for various values of the coupling constants

a8 well as different sets of mwatching points. In this way, we have
searched for solutions up to s & 150. The results are presented and

discussed in the next section.

3. RESULTS AND DISCUSSION

As a resu.].t of the above procedure we found resonant solutions

15



with very good input-output congistency (lsRout - BRinI < 0.5,
It = yp | < 0.?) for rather wide range of values of the

Yukawa coupling constants (both

B, e

’ varying from O.to 16) and dif-

ferent sets of matching_points (MP). Table I shows the results forv1

|

.

For the first set of MP (sM = 88, Sy = 65) we see that for
M >

~ the above set of coupling constants a sharp low energy resonant
solution does exist. The position and width“are close to the ex-
.

rerimental values o

sRa-:IOB ' <50 Mev .

As regards variation with coupling constants an interesting

- feature is found. Even when both the coupling constants

.-
(B 35

are set equal to zero,
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many self consistent solutions are found, but they are spread out
in the region between threshold and s a 130. As the coupling
constants are increased, the solutions start becoming localized in
the region near threshold, with slowly increasing value of .

For the other sets of MP (78, 65; 67, 62; 88, 45) similar
results are obtained. We find that the results are not sensitive
to the variation of the matching points if they are chosen in such
a way that one of them lies on either side of the nearby cuts (taken
together). However, if one of them lies in between the nearby cuts
or both of them lie on the same side of these: cutse, the results are
somewhat sensitive to the variations of the MP.

In view of this situatlion, we make the following remarks. One
of the features of this problem is the crowding of singularities
near the physical threshold as well as with respect to each other.
’This makes it difficult 4o find suitable MP. Ideally, the final
results should be independent of the choice of these. But in
practice certain é.nmmt of ca.ution.must be used. As discussed in
reference 10, these points should be as far away from physical

thresholds and the' unknown left hand singularities as possible. Thus




[N
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there is an extremely narrow region available for placing Y st,
and these points are necessarily close to the nearby cuts. Rather
a posteriori, we can say that the <€ best set » of MP corresponds
to having one of them on either side of the nearby cuts (taken together)
since as mentioned above, for this situation the final results are
not sensitive to the variation of each of these points. It is
rather remarkable that this set of MP gives the position and residue
of’resonance quite close to the experimental valuesl’a.

Thus we see that in the present procedure, we do obtain a self-
consistent low lyan resonance in T = 2,'P5/2 %L - 7n system
Whether future experiments confirm the existence and quantum numbers of
this resonance remains to be seen. It has been often remarked that
the dynamical methods should not only predict existing resonances
but also should rule out non-existing ones. If the resonance under
discussion, for example, is not confirmed, one can seriously ques-
tion the validity of the dynamical method-used herel7, in cases

where observed resonances have beey‘shown to be seli‘-consistent.g’lo’18

|
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TABLE I

Some self consistent solutions for

“"“we

LA , gsjAﬁz =11 622112 = ll-
: : Yn ’ Lm *

Values of s and I' are given in units of 1 and Mev respectively.
n 1s dimensionless. Some solutions close to the given solutions
with slightly different input-output self consistency have also been

obtained.

le SMé SRin ®Rout .”in Hout r&n rbut
88 65 98.5 98.1 10 10.1 17.6 16
T8 65 115.9 115.7 12.0 12.0 155.6 153.7

67 62 128.8 128.6 15.0 14.9 380.7 37h.3
88 45 99 98.6 ° 10.4 10.4 20.3 18.4

< .
] i
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FIGURE CAPTION
"Singularities of the partial wave amplitude in the s-plane.
Valuee of s are given in units of 2,
' g
a,
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